Indian Statistical Institute, Bangalore

M. Math First Year

Second Semester - Complex Analysis

Mid-term ExamDate: February 24, 2020Maximum marks: 30Duration: 2 hoursAnswer any three and each question carries 10 Marks

- 1. (i)Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius of convergence R. Prove that f is holomorphic and $f'(z) = \sum_{n=0}^{\infty} n a_n (z-a)^{n-1}$ has radius of convergence R.
 - (ii) Determine all analytic functions f such that f is also analytic (*Marks: 3*).
 - (iii) Determine all analytic functions f such that $\operatorname{Re}(z)f(z)$ is also analytic (Marks: 2).
- 2. (i) Determine the region in which the following function is defined and holomorphic

$$f(z) = \int_0^1 \frac{1}{1+tz} dt.$$
 (Marks : 5)

(ii) For any closed path γ and $z \notin \mathbb{C} \setminus \gamma^*$, prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{d\zeta}{\zeta - z}$ is an integer.

3. Let $\phi \in H(\Omega)$ and $\phi'(z_0) \neq 0$ for some $z_0 \in \Omega$.

(i) Prove that ϕ has a holomorphic inverse in a neighbourhood of z_0 .

(ii) If $g = f \odot \phi$ and f has a zero of order m at $\phi(z_0)$, prove that g has a zero at z_0 of order m (Marks: 4).

4. (i) Let $P_r(t)$ be the Poisson kernel. Prove that $P_r(\theta - t) = \operatorname{Re}(\frac{e^{it} + z}{e^{it} - z})$ where $z = re^{i\theta}, \int_{-\pi}^{\pi} P_r(t) dt = 2\pi, P_r(t) > 0$ and $P_r(\delta) \to 0$ uniformly in $\delta \in [t, \pi]$ as $r \to 1$ for any t > 0 (Marks: 7).

(ii) Determine all harmonic functions u such that u^2 is harmonic.

5. (i) Prove that a harmonic function that is zero on T is zero on U also (DO NOT USE any result) (*Marks: 5*).

(ii) Let (u_n) be a sequence of positive harmonic functions on a region Ω . Suppose $u_n(z_0) \to 0$ for some $z_0 \in \Omega$. Describe the behaviour of (u_n) in the rest of Ω .